Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 345
Filtrar
1.
Inflammopharmacology ; 32(2): 1371-1386, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38448794

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder that impairs mental ability and interrupts cognitive function. Heavy metal exposure like aluminum chloride is associated with neurotoxicity linked to neuro-inflammation, oxidative stress, accumulation of amyloid plaques, phosphorylation of tau proteins associated with AD like symptoms. The objective of the present investigation was to assess the effect 3-acetyl coumarin (3AC) in a rat model of AD. Preliminary screening was performed with SWISS ADME to check for the bioavailability of 3-AC and likeness score which proved favorable. 3-AC docked against Caspase 3, NF-κß and tau protein kinase I exhibited good binding energies. Male rats were divided into six groups (n = 5). AlCl3 (100 mg/kg BW) was administered for 28 days before starting treatment to induce AD. Normal control rats received vehicle. Treatment groups received 10, 20 and 30 mg/kg 3-AC for 28 days. Rivastigmine (2 mg/kg) was the standard. Behavioral tests (EPM, MWM) were performed at 7-day intervals throughout study period. Rats showed improved spatial memory and learning in treatment groups during behavioral tests. Rats were euthanized on day 28. Inflammatory markers (IL-1ß, IL-16 and TNFα) exhibited significant improvement (p < 0.001) in treated rats. Oxidative stress enzymes (SOD, CAT, GSH, MDA) were restored. Caspase3 and NF-κß quantified through qRT-PCR also decreased significantly (p < 0.001) when compared to disease control group. Levels of acetyl cholinesterase, dopamine and noradrenaline were also restored in treated rats significantly (p < 0.001). 3-AC treatment restored neuroprotection probably because of anti-inflammatory, anti-oxidant and anti-cholinesterase potential; hence, this can be considered a promising therapeutic potential alternative.


Assuntos
Doença de Alzheimer , Fármacos Neuroprotetores , Ratos , Masculino , Animais , Cloreto de Alumínio/efeitos adversos , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Compostos de Alumínio/uso terapêutico , Compostos de Alumínio/toxicidade , Cloretos/toxicidade , Cloretos/uso terapêutico , Ratos Wistar , Estresse Oxidativo , Antioxidantes/farmacologia , Inflamação/tratamento farmacológico , Inflamação/complicações , Cumarínicos/farmacologia , Cumarínicos/uso terapêutico , Modelos Animais de Doenças
2.
Biol Trace Elem Res ; 202(2): 548-557, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37289414

RESUMO

Non-specifically binding of aluminum to various substances in the organism can result in toxicity. The accumulation of large amounts of aluminum can cause an imbalance in metal homeostasis and interfere with the synthesis and release of neurotransmitters. Flavonoids have strong metal chelating activity, which can reduce damage to the central nervous system. The purpose of this study was to investigate the protective effect of three representative flavonoids, rutin, puerarin and silymarin, on the brain toxicity induced by long-term exposure to aluminum trichloride (AlCl3). Sixty-four Wistar rats were randomly divided into eight groups (n = 8). The rats in six intervention groups were given 100 or 200 mg/kg BW/day of three different flavonoids for four weeks after a 4-week exposure to 281.40 mg/kg BW/day AlCl3·6H2O, while the rats in the AlCl3-toxicity and control groups were given the vehicle after the period of AlCl3 exposure. The results showed that rutin, puerarin, and silymarin could increase the concentrations of magnesium, iron, and zinc in the brains of the rats. Moreover, the intake of these three flavonoids regulated the homeostasis of amino acid neurotransmitters and adjusted the concentrations of monoamine neurotransmitters to normal levels. Taken together, our data suggest that rutin, puerarin, and silymarin could ameliorate AlCl3-induced brain toxicity in the rats by regulating imbalance of metal elements and neurotransmitters in the brains of rats.


Assuntos
Alumínio , Silimarina , Ratos , Animais , Alumínio/toxicidade , Silimarina/farmacologia , Ratos Wistar , Compostos de Alumínio/toxicidade , Rutina/farmacologia , Estresse Oxidativo , Encéfalo , Flavonoides , Neurotransmissores/farmacologia
3.
Crit Rev Toxicol ; 53(3): 181-206, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37387512

RESUMO

Metal phosphides are highly toxic pesticides that result in high morbidities and mortalities worldwide. This systematic review included 350 studies that fulfilled the eligibility criteria. There were significant rising trends of studies on acute aluminum phosphide (AlP) and zinc phosphide (Zn3P2) poisoning (p-values = <.001), pointing to an increased number of phosphide-intoxicated patients. Acute AlP poisoning studies represented 81%, 89.3%, and 97.7% of all descriptive, analytical, and experimental interventional studies included in this review, respectively. High AlP poisoning mortality explains great research interest in AlP poisoning. Thus, after 2016, nearly half (49.7%) of studies on acute AlP poisoning were issued. Also, 78.82% of experimental interventional studies on AlP poisoning were published after 2016. The trends of in-vitro, animal, and clinical studies on AlP poisoning significantly increased with p-values equal to .021, <.001, and <.001, respectively. Seventy-nine treatment modalities for acute AlP poisoning were pooled from 124 studies; 39 management-related case reports, 12 in-vitro studies, 39 animal studies, and 34 clinical studies. All therapeutic modalities were summarized to formulate an integrated and comprehensive overview. For clinicians, therapeutic modalities significantly decreased mortality of acute AlP poisoning in clinical trials included extracorporeal membrane oxygenation (ECMO), N-acetyl cysteine (NAC), vitamin E, glucose-insulin-potassium (GIK) infusion, fresh packed RBCs infusion, and GIT decontamination using oils. However, meta-analyses are needed to provide solid evidence regarding their efficacies. To date, there is no effective antidote nor evidence-based standardized protocol for managing acute AlP poisoning. This article outlined the potential research gaps in phosphide poisoning that might promote and direct future medical research in this context.


Assuntos
Praguicidas , Animais , Praguicidas/toxicidade , Lacunas de Evidências , Antídotos , Acetilcisteína/uso terapêutico , Compostos de Alumínio/toxicidade
4.
Molecules ; 28(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36615626

RESUMO

Recent evidences indicate that there is a substantial increase in worldwide cases of dementia. Alzheimer's disease is the leading cause of dementia and may contribute to 60-70% of cases. Quercetin is a unique bioflavonoid that has numerous therapeutic benefits such as anti-allergy, anti-ulcer, anti-inflammatory, anti-hypertensive, anti-cancer, immuno-modulatory, anti-infective, antioxidant, acetylcholinesterase inhibitory activity, neuroprotective effects, etc. In the present study, we evaluated the neuroprotective effect of orally administered quercetin with memantine in albino Wistar rats after inducing neurotoxicity through AlCl3 (100 mg/kg, p.o.). Chronic administration of AlCl3 resulted in poor retention of memory and significant oxidative damage. Various behavioral parameters, such as locomotor activity, Morris water maze, elevated plus maze, and passive avoidance test, were assessed on days 21 and 42 of the study. The animals were euthanatized following the completion of the last behavioral assessment. Various oxidative stress parameters were assessed to know the extent of oxidative damage to brain tissue. Quercetin with memantine has shown significant improvement in behavioral studies, inhibition of AChE activity, and reduction in oxidative stress parameters. Histopathological studies assessed for cortex and hippocampus using hematoxylin and eosin (H&E), and Congo red stain demonstrated a reduction in amyloid-ß plaque formation after treatment of quercetin with memantine. Immunohistochemistry showed that quercetin with memantine treatment also improved the expression of brain-derived neurotrophic factor (BDNF) and inhibited amyloid-ß plaque formation. The present study results demonstrated protective effects of treatment of quercetin with memantine in the neurotoxicity linked to aluminum chloride in albino Wistar rats.


Assuntos
Doença de Alzheimer , Fármacos Neuroprotetores , Ratos , Animais , Fármacos Neuroprotetores/uso terapêutico , Ratos Wistar , Memantina/farmacologia , Quercetina/farmacologia , Compostos de Alumínio/toxicidade , Cloretos/toxicidade , Acetilcolinesterase/metabolismo , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Estresse Oxidativo , Aprendizagem em Labirinto
5.
Biol Trace Elem Res ; 201(6): 2843-2853, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35869376

RESUMO

α-Tocotrienol is one of the major constituents of palm oil. It is a well-known antioxidant and cholesterol-lowering neuroprotectant. To prevent the initiation of Alzheimer's like symptoms, much attention has been shifted to the major role played by antioxidants. Previous epidemiological reports correlate the increasing incidence of developing Alzheimer's disease (AD), to the aluminum (Al) content in drinking water. Al, being a ubiquitous element, has a long history of being particularly reactive towards multiple aspects of neurobiology. So, the current study examines the effect of Al-induced behavioral, biochemical, and histopathological changes in rat brain; and the ameliorative effect of palm oil in reducing the resulting neurotoxicity. The experimental design consisted of 4 groups: control group which received rodent chow diet and water ad libitum; Al group received aluminum lactate (50 mg/kg bw); Al + palm oil group was administered with Al (50 mg/kg bw) and palm oil (60 mg/kg bw); and palm oil group received palm oil (60 mg/kg bw). Al was given by oral gavage once daily for 6 weeks and palm oil was administered intraperitoneally. After 6 weeks of supplementation, Al + palm oil group showed significantly lower malondialdehyde (MDA) content, but higher superoxide dismutase (SOD), catalase (CAT), GST, and GPx activity as compared to Al group. Al group has significantly higher level of MDA content, but lower SOD, CAT, GST, and GPx activity as compared to control group. In conclusion, this study suggested that palm oil was effective in preventing the Al-induced brain damage in rats.


Assuntos
Compostos de Alumínio , Encéfalo , Lactatos , Óleo de Palmeira , Óleo de Palmeira/farmacologia , Lactatos/toxicidade , Compostos de Alumínio/toxicidade , Encéfalo/metabolismo , Antioxidantes , Tocotrienóis
6.
Oxid Med Cell Longev ; 2022: 9466166, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36411758

RESUMO

Previous studies have demonstrated that both CS and LiCl possess anti-Alzheimer's disease (AD) activities. We prepared chondroitin sulfate-Li (CS-Li) and investigated its effect on AD and explored the possible mechanisms both in vitro and in vivo. We found that CS-Li could inhibit amyloid ß (Aß) aggregation and protect SH-SY5Y cells from Aß 1-42-induced cytotoxicity in vitro. In D-gal and AlCl3-induced AD mouse model, CS-Li improves the spatial learning and memory abilities of AD mice, reverses the nuclear pyknosis and cell edema, and increases the survival rate of neurons in hippocampus of mice. Moreover, CS-Li significantly increased the levels of GSH-Px, Na+/K+-ATPase, and ChAT and decreased the levels of MDA and AchE in AD mice. Western blot results demonstrated that CS-Li could decrease the hyperphosphorylation of tau (Ser396/Ser404) by regulating the expression of p-GSK-3ß (Ser9) and PP2A and inhibit the expression of proinflammatory factors through inhibiting NF-κB nuclear translocation by activating the MAPK signaling pathways. In a word, CS-Li can delay AD development through multitarget processes, including Aß aggregation inhibition, oxidative stress damage, tau hyperphosphorylation, and inflammatory response, thereby improves learning and memory abilities.


Assuntos
Peptídeos beta-Amiloides , Neuroblastoma , Animais , Humanos , Camundongos , Peptídeos beta-Amiloides/toxicidade , Peptídeos beta-Amiloides/metabolismo , Sulfatos de Condroitina , Glicogênio Sintase Quinase 3 beta , Lítio , Doença de Alzheimer/tratamento farmacológico , Compostos de Alumínio/toxicidade
7.
Int J Mol Sci ; 23(20)2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36293377

RESUMO

Hippocampus is the brain area where aluminum (Al) accumulates in abundance and is widely associated with learning and memory. In the present study, we evaluate behavioral, tissue, and proteomic changes in the hippocampus of Wistar rats caused by exposure to doses that mimic human consumption of aluminum chloride (AlCl3) in urban areas. For this, male Wistar rats were divided into two groups: Control (distilled water) and AlCl3 (8.3 mg/kg/day), both groups were exposed orally for 60 days. After the Al exposure protocol, cognitive functions were assessed by the Water maze test, followed by a collection for analysis of the global proteomic profile of the hippocampus by mass spectrometry. Aside from proteomic analysis, we performed a histological analysis of the hippocampus, to the determination of cell body density by cresyl violet staining in Cornu Ammonis fields (CA) 1 and 3, and hilus regions. Our results indicated that exposure to low doses of aluminum chloride triggered a decreased cognitive performance in learning and memory, being associated with the deregulation of proteins expression, mainly those related to the regulation of the cytoskeleton, cellular metabolism, mitochondrial activity, redox regulation, nervous system regulation, and synaptic signaling, reduced cell body density in CA1, CA3, and hilus.


Assuntos
Alumínio , Proteômica , Humanos , Ratos , Masculino , Animais , Alumínio/toxicidade , Alumínio/metabolismo , Cloreto de Alumínio/toxicidade , Ratos Wistar , Hipocampo/metabolismo , Compostos de Alumínio/toxicidade
8.
Vaccine ; 40(33): 4881-4888, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35810062

RESUMO

Aluminum salts have been used as adjuvants in human vaccines since 1932. The most used adjuvants are Al oxyhydroxide (AlOOH) and Al hydroxyphosphate (AlOHPO4). Al adjuvants have different physico-chemical properties. The differences in these properties are not well documented and not considered by the Food and Drug Administration (FDA), though they can largely influence biological effects of the adjuvants which are particulate components. In this study, different physico-chemical properties including the shape, size and charge of particles have been evaluated under different conditions in three Al adjuvants containing-vaccines and two corresponding commercial adjuvants suspensions. The results showed that the two Al adjuvants have different shapes, sizes and charges but both form aggregates. In addition, a clear effect of dilution on the size of the aggregates was observed. Moreover, different sizes of Al particles were measured for both Al oxyhydroxide adjuvant alone or in the vaccine, at identical concentrations, displaying the impact of adsorbed proteins on the size of aggregates in the case of the vaccine. Taken together, this paper suggests the importance to evaluate, before any biological and especially toxicological impact study, the whole physico-chemical properties of Al particle without restricting to the sole evaluation of the injected concentration. Furthermore, any modification of these mentioned parameters during manipulation, before animal or cell exposure, should be considered. In a more global way, the fixed "safe dose" of Al adjuvants should be specific for each type of Al adjuvant independently or for a mix of the two compounds, due to their different properties.


Assuntos
Alumínio , Vacinas , Adjuvantes Imunológicos/química , Compostos de Alumínio/química , Compostos de Alumínio/toxicidade , Hidróxido de Alumínio , Animais , Humanos
9.
J Inorg Biochem ; 232: 111835, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35489253

RESUMO

Aluminum contamination in environment is very serious and the central nervous system is the main target of aluminum toxicity. The neurotoxic of aluminum is closely related to its speciation. PC12 cells were taken as the cell model to compare the morphological characteristics and mitochondrial kinetic disorder of two speciation of aluminum compounds (AlCl3 and aluminum-maltolate (Al(mal)3)). When the concentration of AlCl3 was 3 mM, the intracellular aluminum ion content was 3.87 times that of the 0.5 mM Al(mal)3 treatment group. At the 3 mM AlCl3 treatment group, intracellular ion homeostasis was disrupted. Abnormally elevated Ca2+ levels inhibited protein kinase B (AKT) phosphorylation, resulting in impaired cell morphology. At the 0.5 mM Al(mal)3 treatment group, abnormally high levels of Ca2+ caused mitochondrial kinetic disorder, which led to impaired cellular energy metabolism. Al(mal)3 had shown more cytotoxic in PC12 than AlCl3 at the same concentration. AlCl3 tended to inhibit the phosphorylation of AKT and damages cell morphology. Al(mal)3 mainly affected mitochondrial kinetic disorder, which led to impaired cellular energy metabolism. These findings provided experimental evidence for in-depth research on aluminum-induced neurotoxicity.


Assuntos
Alumínio , Proteínas Proto-Oncogênicas c-akt , Alumínio/toxicidade , Compostos de Alumínio/toxicidade , Animais , Apoptose , Células PC12 , Ratos
10.
Toxicol Mech Methods ; 32(8): 616-627, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35341471

RESUMO

Aluminum is an environmentally abundant potential neurotoxic agent that may result in oxidative damage to a range of cellular biomarkers. The potential sources of aluminum accumulation in the body include drinking water, food, medicines, vaccines, and aluminum cookware utensils, etc. The accumulation of aluminum in the brain is reported to be associated with cholinergic dysfunction, oxidative stress and neuronal damage, which may ultimately cause Alzheimer's disease. Since chronic exposure to aluminum leads to its accumulation in the brain, so this study was done by a long-term (24 weeks) low dose (20 mg/kg) oral exposure of aluminum chloride in rats. In this chronic model, we have evaluated the major hallmarks of Alzheimer's disease including amyloid-beta (Aß1-42) and phosphorylated-tau (p231-tau) protein in brain tissue. Furthermore, we evaluated the level of acetyl cholinesterase activity, inflammatory cytokines such as TNF-α, IL-6 and IL-1ß, and oxidative stress biomarkers in the rat brain in this model. The neurobehavioral parameters were also assessed in animals by using spontaneous locomotor activity, passive avoidance, rotarod test and novel object recognition test to evaluate alteration in learning, memory and muscle co-ordination. We found that chronic oral exposure to aluminum chloride causes a significant increase in structural hallmarks such as Aß1-42 and p231-tau levels along with pro-inflammatory cytokines (TNF-α and IL-6), oxidative stress, and a decrease in antioxidant markers such as GSH and catalase in the brain tissue. These biomarkers significantly affected neurobehavioral parameters in animals. This study provides a mechanistic understanding of chronic aluminum-induced neuronal toxicity in the brain with relevance to Alzheimer's disease.


Assuntos
Doença de Alzheimer , Síndromes Neurotóxicas , Alumínio/toxicidade , Cloreto de Alumínio/toxicidade , Compostos de Alumínio/toxicidade , Doença de Alzheimer/induzido quimicamente , Animais , Biomarcadores/metabolismo , Modelos Animais de Doenças , Interleucina-6/metabolismo , Síndromes Neurotóxicas/etiologia , Estresse Oxidativo , Ratos , Fator de Necrose Tumoral alfa/metabolismo
11.
Med. leg. Costa Rica ; 39(1)mar. 2022.
Artigo em Espanhol | LILACS, SaludCR | ID: biblio-1386303

RESUMO

Resumen En la industria agrícola se ha implementado el uso de plaguicidas lo que ha aumentado la cantidad y calidad de los productos agrícolas en varios países en desarrollo, su objetivo es mejorar la calidad de vida y sustento de los consumidores, sin embargo, el uso inadecuado puede causar graves intoxicaciones tanto por ingestión accidental, ocupacional o ingestión con fines suicidas u homicidas, lo cual los hace un tema de relevancia médico legal. El fosfuro de aluminio es un rodenticida, insecticida y fumigante sólido usado como una sustancia ideal para la conservación de los granos, ya que es altamente tóxico contra los insectos que invaden los granos en todos sus estadios sin afectar como tal las semillas y su germinación, es un compuesto accesible y económico lo que hace que su uso con fines suicidas y homicidas sea elevado, ante la intoxicación con fosfuro de aluminio se han descritos síntomas bastante inespecíficos como lo son dolor en el epigastrio, vómitos, diarrea, mareos, disnea y en algunos casos acompañado de un olor a ajo que es característico de ésta intoxicación lo que aumenta la sospecha clínica. Se realizó una revisión bibliográfica en diferentes bases de datos, de los artículos publicados referentes al tema de los últimos doce años, con el objetivo de profundizar en las características del fosfuro de aluminio, su mecanismo de acción y toxicidad. Se concluye que es fundamental conocer los diferentes plaguicidas y sus efectos en la salud, principalmente de aquellos con una alta letalidad, que se podrían estar utilizando clandestinamente y que al ser sumamente económicos son de fácil acceso para emplearse con fines delictivos.


Abstract The agricultural industry has implemented the use of pesticides, which has increased the quantity and quality of agricultural products in several developing countries, its objective is to improve the quality of life and livelihood of consumers, however, improper use can cause serious intoxications both by accidental ingestion, occupational or ingestion for suicidal or homicidal purposes, which makes them an issue of medico-legal relevance. Aluminum phosphide is a rodenticide, insecticide and solid fumigant used as an ideal substance for the preservation of grains, since it is highly toxic against insects that invade the grains in all their stages without affecting the seeds and their germination, it is an accessible and economic compound which makes its use for suicidal and homicidal purposes high, In the face of aluminum phosphide poisoning, quite unspecific symptoms have been described, such as pain in the epigastrium, vomiting, diarrhea, dizziness, dyspnea and in some cases accompanied by a garlic odor which is characteristic of this poisoning, which increases clinical suspicion. A bibliographic review was conducted in different databases, of the articles published on the subject in the last twelve years, with the aim of deepening in the characteristics of aluminum phosphide, its mechanism of action and toxicity. It is concluded that it is essential to know the different pesticides and their effects on health, those with a high lethality, which could be used clandestinely and which, being extremely cheap, are easily accessible to be used for criminal purposes


Assuntos
Rodenticidas/toxicidade , Compostos de Alumínio/toxicidade
12.
Toxicol In Vitro ; 79: 105295, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34896600

RESUMO

Aluminum (Al) is highly abundant in the biosphere and can occur in different physico-chemical states. It is present in human food and undergoes transitions between dissolved and particulate species during the passage of the gastrointestinal tract. Moreover, in a complex matrix such as food different inorganic and organic counterions can affect the chemical behavior of Al following oral uptake. In this work, the effects of different counterions, namely chloride, citrate, sulfate, lactate and acetylacetonate, on Al uptake and toxicity in the human intestine are studied. The respective Al salts showed different dissolution behavior in biological media and formed nanoscaled particles correlating in reverse with the amount of their dissolved fraction. The passage through the intestinal barrier was studied using a Caco-2 Transwell® system, showing counterion-dependent variance in cellular uptake and transport. In addition, Al toxicity was investigated using Al species (Al3+, metallic Al0 and oxidic γAl2O3 nanoparticles) and counterions individually or in mixtures on Caco-2 and HepG2 cells. The strongest toxicity was observed using a combination of Al species, depending on solubility, and the lipophilic counterion acetylacetonate. Notably, only the combination of both led to toxicity, while both substances individually did not show toxic effects. A toxification of previously non-toxic Al-species by the presence of acetylacetonate is shown here for the first time. The dependency on the concentration of free Al ions was demonstrated using sodium hydrogen phosphate, which was able to counteract the toxic effects by complexing free Al ions. These findings, using Al salts as an example for a common food contaminant, underline the importance of a consideration of the chemical properties of human nutrition, especially dissolution and hydrophobicity, which can significantly influence the cellular uptake and effects of xenobiotic substances.


Assuntos
Compostos de Alumínio/toxicidade , Alumínio/toxicidade , Nanopartículas Metálicas/toxicidade , Alumínio/química , Alumínio/metabolismo , Compostos de Alumínio/química , Compostos de Alumínio/metabolismo , Disponibilidade Biológica , Células CACO-2 , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Humanos , Hidroxibutiratos/toxicidade , Intestinos/efeitos dos fármacos , Nanopartículas/toxicidade , Pentanonas/toxicidade
13.
Hum Exp Toxicol ; 40(12_suppl): S381-S396, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34569344

RESUMO

Aluminum phosphide (AlP) poisoning can be deadly in most cases targeting the heart. To overcome AlP toxicity, exenatide has been studied in the present study due to its pleiotropic effects on cardiac damages. In this study, the rats were exposed to LD50 of AlP (10 mg/kg) by gavage, and exenatide at doses (0.05, 0.1, and 0.2 mg/kg) injected intraperitoneally 30 min after poisoning. The cardiac parameters including heart rate (HR), blood pressure (BP), QRS, corrected QT (QTc), and ST were monitored for 180 min. Blood glucose level was measured in the study groups 30 min after exenatide injection. Evaluation of biochemical parameters including mitochondrial complexes I, II, and IV activities, adenosine diphosphate (ADP)/adenosine triphosphate (ATP) ratio, malondialdehyde (MDA), apoptosis, lactate, troponin I, and brain natriuretic peptide (BNP) was done on heart tissues after 12 and 24 h. Additionally, the tissues were analyzed for any pathological damages including necrosis, hemorrhage, or hyperemia 24 h post-treatment. Our results showed that AlP-induced HR, BP, and electrocardiographic changes were improved by exenatide at all doses. The blood glucose levels of poisoned animals reached control levels after exenatide treatment. Besides, treatment with exenatide at all doses improved complexes I and IV activity, ADP/ATP ratio, and apoptosis. Malondialdehyde, lactate, troponin I, and BNP levels were also diminished after exenatide co-treatment in poisoned animals. On the other hand, administration of exenatide doses improved the histopathology of AlP-induced tissues. Based on our findings, exenatide has a protective effect against phosphine-induced cardiotoxicity in an almost dose-dependent way. However, further investigations are needed on the potential clinical use of exenatide in this poisoning.


Assuntos
Compostos de Alumínio/toxicidade , Pressão Sanguínea/efeitos dos fármacos , Eletrocardiografia , Exenatida/farmacologia , Frequência Cardíaca/efeitos dos fármacos , Incretinas/farmacologia , Fosfinas/toxicidade , Animais , Glicemia/efeitos dos fármacos , Relação Dose-Resposta a Droga , Exenatida/administração & dosagem , Dose Letal Mediana , Peroxidação de Lipídeos , Masculino , Distribuição Aleatória , Ratos , Ratos Wistar
14.
J Appl Toxicol ; 41(11): 1704-1718, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34396567

RESUMO

Usage of inorganic ingredients like aluminium salts in cosmetics and personal care products has been a concern for producers and consumers. Although aluminium is used to treat hyperhidrosis, some worries have been raised about aluminium's role in breast cancer, breast cyst and Alzheimer's disease. The human population is exposed to aluminium from vaccines, diet, and drinking water, but the frequent use of aluminium-based cosmetics might add additional local exposure. This paper reviews literature to determine if aluminium-based products may pose potential harm to the body. The dermal absorption of aluminium is not widely understood. It is not yet known whether aluminium can travel from the skin to brain to cause Alzheimer's disease. Aluminium may cause gene instability, alter gene expression or enhance oxidative stress, but the carcinogenicity of aluminium has not been proved yet. Until now, epidemiological researches were based on oral information, which lacks consistency, and the results are conflicting. Future studies should target real-life-based long-time exposure to antiperspirants and other aluminium-containing cosmetics and personal care products.


Assuntos
Compostos de Alumínio/toxicidade , Alumínio/toxicidade , Cosméticos/toxicidade , Expressão Gênica/efeitos dos fármacos , Humanos , Estresse Oxidativo/efeitos dos fármacos
15.
Food Chem Toxicol ; 154: 112347, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34139304

RESUMO

BACKGROUND: Aluminum phosphide (AlP) causes severe cardiotoxicity. Taurine has been chosen for the present study because of its positive known effects on cardiac injuries. METHOD: To evaluate AlP-induced cardiotoxicity, the animals were divided into seven groups, including the control group, the taurine group (500 mg/kg), AlP with LD50 dose, AlP + taurine 20, 50, 100, and 200 mg/kg group. To assess cardiac hemodynamic parameters, Wistar rats received taurine intraperitoneally 60 min after AlP gavage. Cardiac hemodynamic parameters were evaluated for 180 min. To study biochemical parameters, 24 h after AlP treatment, the animals were sacrificed, and heart tissues were collected. RESULT: ECG, BP, and HR abnormalities of AlP poisoning were improved by taurine treatment. AlP induced biochemical alterations including complexes I and IV activities, the ADP/ATP ratio, mitochondrial membrane potential, cytochrome C release, and oxidative stress biomarkers ameliorated by taurine. Moreover, taurine improved apoptosis, as well as lessened CK-MB and troponin I levels. Also, there were no significant changes between taurine 500 mg/kg and the control group in tests. CONCLUSION: The present findings showed that taurine could be a possible candidate for AlP cardiotoxicity treatment via the effect on mitochondrial electron transfer chain and maintaining intracellular ATP balance.


Assuntos
Compostos de Alumínio/toxicidade , Cardiotônicos/uso terapêutico , Cardiotoxicidade/tratamento farmacológico , Fosfinas/toxicidade , Taurina/uso terapêutico , Animais , Pressão Sanguínea/efeitos dos fármacos , Cardiotoxicidade/metabolismo , Creatina Quinase/metabolismo , Eletrocardiografia/efeitos dos fármacos , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Coração/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/enzimologia , Miocárdio/enzimologia , Estresse Oxidativo/efeitos dos fármacos , Ratos Wistar , Troponina I/metabolismo
16.
J Pharm Pharmacol ; 73(11): 1539-1546, 2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-33793778

RESUMO

OBJECTIVES: The effects of Crocin as a cardioprotective material against Aluminum phosphide poisoning by reducing the oxidative stress is investigated. METHODS: The level of biomarkers of oxidative stress (Catalase, Superoxide dismutase, Malondialdehyde and Protein carbonyl) were measured in the cell culture model on Human Cardiac Myocyte cells to detect the protective effect of crocin. Initially, to define the pure impact of aluminum phosphide poison and crocin on the heart cells, their effects on the biomarkers quantity in cell line were measured, separately, using the standard related kits. Later the effect of crocin with different concentration as a treatment on the oxidative stress biomarkers of the poisoned heart cells were monitored. Note that in pre-treatment case, the crocin was initially added to the cells before poisoning them. Data were analyzed using the analysis of variance method. KEY FINDINGS: Results showed that crocin treatment reduced the aluminum phosphide (AlP) poisoning effect significantly. The treatment resulted in substantial deviation in the biomarkers of oxidative stress at the pre- and post-treatment phases for all groups. The oxidative markers values of the poisoned cells were recovered by crocin treatment. CONCLUSIONS: Crocin is proposed as a potentially powerful antioxidant to treat the cardiotoxicity caused by aluminum phosphide poisoning.


Assuntos
Compostos de Alumínio/toxicidade , Antioxidantes/farmacologia , Carotenoides/uso terapêutico , Crocus/química , Miocárdio/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Fosfinas/toxicidade , Antídotos/farmacologia , Antídotos/uso terapêutico , Antioxidantes/metabolismo , Antioxidantes/uso terapêutico , Biomarcadores/metabolismo , Cardiotoxicidade , Carotenoides/farmacologia , Catalase/metabolismo , Coração/efeitos dos fármacos , Humanos , Malondialdeído/metabolismo , Miocárdio/citologia , Miócitos Cardíacos/metabolismo , Praguicidas/toxicidade , Fitoterapia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Carbonilação Proteica , Superóxido Dismutase/metabolismo
17.
Int Endod J ; 54(6): 951-965, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33503268

RESUMO

AIM: To investigate the effects of N-acetyl cysteine (NAC), Biodentine, ProRoot MTA and their combinations, on cell viability, mitochondrial reactive oxygen species (mtROS) production, mineralization and on the expression of genes related to inflammatory cytokine production, mitochondrial dynamics and cell apoptosis of lipopolysaccharide (LPS)-induced human dental pulp cells (hDPCs). METHODOLOGY: Isolated hDPCs were exposed to 20 µg mL-1 of Escherichia coli (E. coli) LPS for 24 h, before the experiment, except for the control group. Eight experimental groups were assigned: (i) control (hDPCs cultured in regular medium), (ii) +LPS (hDPCs cultured in LPS medium throughout the experiment), (iii) -LPS/Media, (iv) -LPS/BD, (v) -LPS/MTA, (vi) -LPS/NAC, (vii) -LPS/BD + NAC and (viii) -LPS/MTA + NAC. Cell viability was measured using Alamar blue assay at 24 and 48 h. Production of mtROS was evaluated at 6 and 24 h by MitoSOX Red and MitoTracker Green. The expressions of IL-6, TNF-α, Bcl-2, Bax, Mfn-2 and Drp-1 genes were investigated at 6 h using reverse transcriptase-polymerase chain reaction (RT-PCR). For differentiation potential, cells were cultured in the osteogenic differentiation media and stained using Alizarin red assay at 14 and 21 days. The Kruskal-Wallis test, Mann-Whitney U test and one-way anova were performed for statistical analysis. RESULTS: NAC was associated with significantly greater LPS-induced hDPC viability (P < 0.05). Both Biodentine and MTA extracts promoted cell survival, whereas the combination of NAC to these material extracts significantly increased the number of viable cells at 24 h (P < 0.05). Biodentine, MTA or NAC did not alter the mtROS level (P > 0.05). NAC supplementation to the MTA extract significantly reduced the level of IL-6 and TNF-α expression (P < 0.05). Regarding mitochondrial dynamics, the use of NAC alone promoted significant Mfn-2/Drp-1 expression (P < 0.05). Most of the groups exhibited a level of Bcl-2/Bax gene expression similar to that of the control group. The increases in mineralization productions were observed in most of the groups, except the LPS group (P < 0.05). CONCLUSIONS: The antioxidant effect of NAC was not evident under the LPS-induced condition in DPC in vitro. NAC combined either with Biodentine or MTA improved LPS-induced hDPCs survival at 24 h. The combination of NAC with MTA promoted mineralization.


Assuntos
Compostos de Alumínio , Lipopolissacarídeos , Acetilcisteína/farmacologia , Compostos de Alumínio/toxicidade , Compostos de Cálcio/toxicidade , Células Cultivadas , Polpa Dentária , Combinação de Medicamentos , Escherichia coli , Humanos , Inflamação , Lipopolissacarídeos/farmacologia , Dinâmica Mitocondrial , Osteogênese , Óxidos , Materiais Restauradores do Canal Radicular , Silicatos/toxicidade
18.
Biol Trace Elem Res ; 199(1): 227-236, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32279189

RESUMO

Aluminum chloride (AlCl3) is commonly used in daily life; meanwhile, it is the potential etiology of various neurodegenerative as well as hepatorenal diseases. Therefore, the present study was carried out to investigate the correlation between AlCl3-induced biochemical alterations and the toxicity induced in various organs such as the brain, liver, and kidney. Male mice received AlCl3 in an oral dose of 50 mg kg-1 in addition to (50 mg) in drinking water for 2 weeks. Two weeks post-AlCl3 intoxication, the brain, liver, and kidney biochemical indices were assessed via molecular and western blot analysis. The results are as follows: AlCl3 intoxication induced a significant elevation in serum malondialdehyde in addition to a significant reduction in serum glutathione (GSH) and superoxide dismutase (SOD) levels. Brain ß-secretase (tubulin-binding protein) and tau proteins which are responsible for the synthesis of ß-amyloid protein that may interfere with neuronal communication in Alzheimer's disease (AD) were also upregulated; regarding hepatic function, AlCl3 elevated serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities. Moreover, it upregulated hepatic mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase (JNK) protein expressions as well as renal kidney-inducible molecule-1 (KIM-1) which indicated the deleterious effect of AlCl3 on these organs. These results were confirmed by histopathological investigations. So, we hypothesize that acute AlCl3 administration is responsible for oxidative cell damage that interferes with brain function inducing ß-amyloid accumulation, Alzheimer's disease, and neurodegenerative damage as well as hepatorenal injuries.


Assuntos
Secretases da Proteína Precursora do Amiloide , Proteínas Quinases Ativadas por Mitógeno , Alumínio , Cloreto de Alumínio , Compostos de Alumínio/toxicidade , Animais , Cloretos/toxicidade , Fígado , Masculino , Camundongos , Estresse Oxidativo
19.
Braz. oral res. (Online) ; 35: e077, 2021. tab, graf
Artigo em Inglês | LILACS, BBO | ID: biblio-1278594

RESUMO

Abstract This study evaluated the physicochemical, biological, and antimicrobial properties of a new hydraulic calcium silicate-based modified material, and compared it with MTA Repair HP and MTA Angelus. The materials were assessed regarding color luminosity (L), color change, radiopacity, setting time, and ISO 6876:2012 linear flow. Volumetric filling and volume change were evaluated using microcomputed-tomography (µCT). Chemical characterization after 28 days in Hank's Balanced Salt Solution (HBSS) and pH analysis were also assessed. Biological characterization of cytotoxicity and microbiological assessment were also undertaken. Shapiro-Wilk, ANOVA, Levene and post hoc analyses with Bonferroni correction were performed, adopting a 5% significance level (p <0.05). Bio-C Pulpo exhibited the highest L values after 90 days. All tested materials demonstrated color change during the analyses, and had radiopacity above 5 mm Al. MTA Repair HP set faster than Bio-C Pulpo, whereas the latter had the highest linear flow. MTA Repair HP had the highest volumetric filling in µCT analysis. Bio-C Pulpo showed the highest alkalinity during all tested periods, and the highest volumetric loss (above 9%), in comparison with MTA Repair HP and MTA Angelus. Bio-C Pulpo did not form calcium hydroxide after hydration. MTA Repair HP demonstrated the highest cytocompatibility, and Bio-C Pulpo, the highest cytotoxicity. No inhibition halos were observed for any material, and similar higher turbidity values were seen after direct contact. Composition additives used in Bio-C Pulpo modified its properties, and both the absence of calcium hydroxide deposition after hydration, and the related cytotoxicity of this material are of particular concern.


Assuntos
Materiais Restauradores do Canal Radicular/toxicidade , Compostos de Alumínio/toxicidade , Óxidos/toxicidade , Teste de Materiais , Cálcio , Silicatos/toxicidade , Compostos de Cálcio/toxicidade , Combinação de Medicamentos
20.
Cardiovasc Toxicol ; 20(5): 454-461, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32712815

RESUMO

Nowadays, poisoning with metal phosphides, especially aluminum phosphide (ALP), is one of the main health threats in human societies. Patients suffer from significant complications due to this type of poisoning, and the heart is one of the main organs targeted by ALP. Therefore, in this study, we discussed the effect of phosphine on cardiac function. This study is based on data obtained from PubMed, between 2002 and 2020. The key keywords included "Aluminum phosphide," "Oxidative Stress," "Mitochondria," "Cardiovascular disease," and "Treatment." The results showed that ALP produced reactive oxygen species (ROS) due to mitochondrial dysfunction. ROS production leads to red blood cell hemolysis, decreased ATP production, and induction of apoptosis in cardiomyocytes, which eventually results in cardiovascular disease. Since ALP has the most significant effect on cardiomyocytes, the use of appropriate treatment strategies to restore cell function can increase patients' survival.


Assuntos
Compostos de Alumínio/toxicidade , Doenças Cardiovasculares/induzido quimicamente , Mitocôndrias Cardíacas/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Praguicidas/toxicidade , Fosfinas/toxicidade , Animais , Apoptose/efeitos dos fármacos , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/fisiopatologia , Metabolismo Energético/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Humanos , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Estresse Oxidativo/efeitos dos fármacos , Prognóstico , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA